$$CE = \frac{TVH_{captured}}{\left(TVH_{captured} + TVH_{uncaptured}\right)} \times 100$$ (Eq. 1) Where: CE = capture efficiency of the emission capture system vented to the add-on control device, percent $TVH_{captured}$ = total mass of TVH captured by the emission capture system as measured at the inlet to the add-on control device during the emission capture efficiency test run, kg, determined according to paragraph (c)(2) of this section TVH_{uncaptured} = total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, kg, determined according to paragraph (c)(3) of this section - (5) Determine the capture efficiency the emission capture system as the average of the capture efficiencies measured in the three test runs. - (d) Alternative capture efficiency protocol. As an alternative to the procedure specified in paragraph (c) of this section, you may determine capture efficiency using any other capture efficiency protocol and test methods that satisfy the criteria of either the data quality objective or lower control limit approach as described in appendix A to subpart KK of this part. ## §63.9323 How do I determine the addon control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by §63.9310. You must conduct three test runs as specified in §63.7(e)(3), and each test run must last at least 1 hour. - (a) For all types of add-on control devices, use the test methods specified in paragraphs (a)(1) through (5) of this section. - (1) Use Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select sampling sites and velocity traverse points. - (2) Use Method 2, 2A, 2C, 2D, 2F, or 2G of appendix A to 40 CFR part 60, as ap- propriate, to measure gas volumetric flow rate. - (3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight. The ANSI/ASME PTC 19.10–1981 Part 10 is an acceptable alternative to Method 3B (incorporated by reference, see §63.14). - (4) Use Method 4 of appendix A to 40 CFR part 60, to determine stack gas moisture. - (5) Methods for determining gas volumetric flow rate, dry molecular weight, and stack gas moisture must be performed, as applicable, during each test run. - (b) Measure total gaseous organic mass emissions as carbon at the inlet and outlet of the add-on control device simultaneously, using either Method 25 or 25A of appendix A to 40 CFR part 60, as specified in paragraphs (b)(1) through (3) of this section. You must use the same method for both the inlet and outlet measurements. - (1) Use Method 25 of appendix A to 40 CFR part 60 if the add-on control device is an oxidizer, and you expect the total gaseous organic concentration as carbon to be more than 50 parts per million at the control device outlet. - (2) Use Method 25A of appendix A to 40 CFR part 60 if the add-on control device is an oxidizer, and you expect the total gaseous organic concentration as carbon to be 50 ppm or less at the control device outlet. - (c) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 1 of this section. If there is more than one inlet or outlet to the add-on control device, you must calculate the total gaseous organic mass flow rate using Equation 1 of this section for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions. $$M_f = Q_{sd}C_c(12)(0.0416)(10^{-6})$$ (Eq. 1) Where: M_f = total gaseous organic emissions mass flow rate, kg/hour (kg/h) C_c = concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A, parts per million by volume (ppmv), dry basis $Q_{\rm sd}$ = volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F, or 2G, dry standard cubic meters/hour (dscm/b) 0.0416 = conversion factor for molar volume, kg-moles per cubic meter (mol/m³) (@ 293 Kelvin [K] and 760 millimeters of mercury [mmHg]). (d) For each test run, determine the add-on control device organic emissions destruction or removal efficiency, using Equation 2 of this section: $$DRE = 100 \times \frac{M_{fi} - M_{fo}}{M_{fi}}$$ (Eq. 2) Where: DRE = organic emissions destruction or removal efficiency of the add-on control device, percent $M_{\rm fi}$ = total gaseous organic emissions mass flow rate at the inlet(s) to the add-on control device, using Equation 1 of this section, $k{\rm g}/h$ $M_{\rm fo}$ = total gaseous organic emissions mass flow rate at the outlet(s) of the add-on control device, using Equation 1 of this section, kg/h. (e) Determine the emission destruction or removal efficiency of the addon control device as the average of the efficiencies determined in the three test runs and calculated in Equation 2 of this section. ## § 63.9324 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by §63.9310, you must establish the operating limits required by §63.9302 according to this section, unless you have received approval for alternative monitoring and operating limits under §63.8(f) as specified in §63.9302. (a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating limits according to paragraphs (a)(1) and (2) of this section. (1) During the performance test, you must monitor and record the combustion temperature at least once every 15 minutes during each of the three test runs. You must monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs. (2) Use the data collected during the performance test to calculate and record the average combustion temperature maintained during the performance test. This average combustion temperature is the minimum operating limit for your thermal oxidizer. (b) Catalytic oxidizers. If your add-on control device is a catalytic oxidizer, establish the operating limits according to either paragraphs (b)(1) and (2) or paragraphs (b)(3) and (4) of this section. (1) During the performance test, you must monitor and record the temperature just before the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test runs. (2) Use the data collected during the performance test to calculate and record the average temperature just before the catalyst bed and the average temperature difference across the catalyst bed maintained during the performance test. These are the minimum operating limits for your catalytic oxidizer. (3) As an alternative to monitoring the temperature difference across the catalyst bed, you may monitor the temperature at the inlet to the catalyst bed and implement a site-specific inspection and maintenance plan for your catalytic oxidizer as specified in paragraph (b)(4) of this section. During the performance test, you must monitor and record the temperature just before the catalyst bed at least once every 15 minutes during each of the